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5 Computer Architecture1 

This chapter is the pinnacle of the hardware part of our journey. We are now ready to take all 

the chips that we’ve built in chapters 1–3 and integrate them into a general-purpose computer 

system capable of running programs written in the machine language presented in chapter 4. 

The specific computer we will build, called Hack, has two important virtues. On the one hand, 

Hack is a simple machine that can be constructed in just a few hours, using previously built 

chips and the hardware simulator supplied with the book. On the other hand, Hack is 

sufficiently powerful to illustrate the key operating principles and hardware elements of any 

general-purpose computer. Therefore, building it will give you an excellent understanding of 

how modern computers work at the low hardware and software levels. 

 Section 5.1 begins with an overview of the von Neumann architecture — a central 

dogma in computer science underlying the design of almost all modern computers. The Hack 

platform is a von Neumann machine variant, and section 5.2 gives its exact hardware 

specification. Section 5.3 describes how the Hack platform can be implemented from previously 

built chips, in particular the ALU built in project 2 and the registers and memory systems built 

in project 3.  Section 5.4 compares the Hack machine with industrial-strength computers, and 

emphasizes the critical role that optimization plays in the latter. Section 5.5 gives an overview 

of the computer construction project. 

The computer that will emerge from this project will be as simple as possible, but not 

simpler. On the one hand, the computer will be based on a minimal and compact hardware 

configuration. On the other hand, this configuration will be sufficiently powerful for executing 

programs written in a Java-like programming language, delivering a reasonable performance 

and a satisfying user experience.  
                                                
1 Chapter 5 from The Elements of Computing Systems by Noam Nisan and Shimon Schocken, 
Second Edition, MIT Press, forthcoming 2017. 
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5.1 Computer Architecture Fundamentals 

5.1.1 The Stored Program Concept 

Compared to all the other machines around us, the most unique feature of the digital computer 

is its amazing versatility. Here is a machine with finite hardware that can perform an infinite 

number of tasks, from playing games to publishing books to designing airplanes. This 

remarkable versatility—a boon that we have come to take for granted—is the fruit of a brilliant 

idea called the stored program concept. Formulated independently by several scientists and 

engineers in the 1930s, the stored program concept is still considered the most profound 

invention in, if not the very foundation of, modern computer science. 

 Like many scientific breakthroughs, the basic idea is remarkably simple. The computer 

is based on a fixed hardware platform, capable of executing a fixed repertoire of very simple 

instructions. At the same time, these instructions can be combined like building blocks, yielding 

arbitrarily sophisticated programs. Moreover, the logic of these programs is not embedded in 

the hardware, as it was in mechanical computers predating 1930. Instead, the program’s code is 

temporarily stored and manipulated in the computer’s memory, just like data, becoming what is 

known as “software.” Since the computer’s operation manifests itself to the user through the 

currently executing software, the same hardware platform can be made to behave completely 

differently each time it is loaded with a different program. 

5.1.2 The von Neumann Architecture 

The stored program concept is a key element of many abstract and practical computer models, 

most notably the universal Turing machine (1936) and the von Neumann machine (1945). The 

Turing machine—an abstract artifact describing a deceptively simple computer—is used mainly 

in theoretical computer science, for analyzing the logical foundations of computational 
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problems and solutions. In contrast, the von Neumann machine is a practical architecture and 

the conceptual blueprint of almost all computer platforms today. 

 The von Neumann architecture, shown in diagram 5.1, is based on a central processing 

unit (CPU), interacting with a memory device, receiving data from some input device, and 

sending data to some output device. At the heart of this architecture lies the stored program 

concept: The computer’s memory stores not only the data that the computer manipulates, but 

also the very instructions that tell the computer what to do. Let us explore this architecture in 

some detail. 

 

 
Diagram 5.1: the von Neumann architecture 
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5.1.3 Memory 

Like other hardware elements, the memory unit can be discussed from a physical perspective 

and from a logical perspective. Physically, the memory is a linear sequence of addressable 

registers, each having a unique address and a value, which is a fixed-size word of information. 

Logically, the memory is divided into two areas. One area is dedicated for storing data, e.g. the 

arrays and objects of programs that are presently executing, while the other area is dedicated for 

storing the programs’ instructions. Although all these “data words” and “instruction words” 

look exactly the same physically, they serve very different purposes. 

In some von Neumann architecture variants, the data memory and the instruction memory 

are managed within the same physical memory unit, as was just explained. In other variants, the 

data memory and the instruction memory are kept in separate physical memory units that have 

distinct address spaces. This setting, sometimes referred to as ”Harvard architecture”, is also the 

architecture of our Hack computer. Both variants have certain advantages that will be discussed 

later in the chapter. 

All the memory registers—irrespective of their roles—are accessed in the same way: in 

order to manipulate a particular memory register, one must first select the register by supplying 

an address. This action provides an immediate access to the register’s data. The term Random 

Access Memory (RAM) is often used to denote the important fact that each randomly selected 

register can be reached in the same access time, irrespective of the memory size and the 

register’s location in it. 

Data Memory: High-level programs manipulate abstract artifacts like variables, arrays, and 

objects. After the programs are translated into machine language, these data abstractions 

become binary codes, stored in the computer’s memory. Once an individual register has been 
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selected from the memory by specifying its address, its contents can be either read or written to. 

In the former case, we retrieve the value of the selected register. In the latter case, we store a 

new value in the selected register, overriding the previous value. Such memories are sometimes 

referred to as “read/write” memories. 

Instruction Memory: Before high-level programs can be executed on the computer, they must 

be translated into machine language. Following this translation, each high-level statement 

becomes a series of one or more machine language instructions. These instructions are stored in 

the computer’s instruction memory as binary codes. In each step of a program’s execution, the 

CPU fetches (i.e., reads) a binary machine instruction from a selected register in the instruction 

memory, decodes it, executes the specified instruction, and figures out which instruction to 

fetch and execute next. 

We see that before executing a particular program, we must first load the program’s code 

into the instruction memory, typically from some peripheral mass storage device like a disk. 

Given the compact and highly focused perspective of a von Neumann machine, how a program 

is loaded into the computer’s instruction memory is considered an external issue. What’s 

important is that when the CPU is called upon to execute a program, the program’s code will 

already reside in memory, one way or another. As you saw in chapter 4, the act of loading a 

program into the instruction memory from an external text file is supported by the supplied 

CPU emulator. 

5.1.4 Central Processing Unit 

The CPU—the centerpiece of the computer’s architecture—is in charge of executing the 

instructions of the currently loaded program. These instructions tell the CPU which calculation 

it has to perform, which registers is has to read from or write to, and which instruction it has to 

fetch and execute next. The CPU executes these tasks using three main hardware elements: an 

Arithmetic-Logic Unit (ALU), a set of registers, and a control unit. 
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Arithmetic Logic Unit: The ALU chip is built to perform all the low-level arithmetic and 

logical operations featured by the computer. For example, a typical ALU can add two numbers, 

compute a bitwise And function on two numbers, compare two numbers, and so on. How much 

functionality an ALU should have is a matter of need, budget, energy, and similar cost-

effectiveness considerations. Any function not supported by the ALU as a primitive hardware 

operation can be later realized by the computer’s system software (yielding a slower 

implementation, of course). 

Registers: Since the CPU is the computer’s centerpiece, it must perform as efficiently as 

possible. In order to boost performance, it is desirable to store the intermediate results that 

computer programs generate locally, close to the ALU, rather than ship them in and out of the 

CPU chip and store them in some remote and separate RAM chip. Thus, a CPU is typically 

equipped with a small set of 2 up to 32 resident high-speed registers, each capable of holding a 

single word.  

Control Unit: A computer instruction is represented as a binary code, typically 16, 32, or 64 

bits wide. Before such an instruction can be executed, it must be decoded, and the information 

embedded in it must be used to signal various hardware devices (ALU, registers, memory) how 

to execute the instruction. The instruction decoding is done by some control unit, which is also 

responsible for figuring out which instruction to fetch and execute next. 

The CPU operation can now be described as a repeated loop: decode the current 

instruction, execute it, figure out which instruction to execute next, fetch it, decode it, and so on. 

This process is sometimes referred to as the “fetch-execute cycle”. 

5.1.5  Registers 

When talking about computer hardware, the term “register” is used quite liberally to refer to any 

device capable of storing a chunk of bits that represents some stand-alone value like a variable 
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value, an instruction, or an address. According to this broad definition, any memory location is 

in fact a register, and so of course are the registers that reside inside the CPU. This section is 

dedicated to a discussion of these CPU-resident registers. 

Suppose we didn’t have any CPU-resident registers. This would imply that any CPU 

operation that requires inputs or outputs would have to rely on memory access. Let us consider 

what each such memory access entails. First, some address value travels from the CPU to the 

RAM’s address input. Next, the RAM’s direct-access logic uses the supplied address to select a 

specific memory register. Finally, the register’s contents either travels back to the CPU (a read 

operation), or is replaced by some additional value that travels from the CPU (a write operation). 

Note that this elaborate process involves at least two separate chips, an address bus, and a 

data bus, resulting in an expensive and time-consuming operation. This stands in sharp contract 

to the ALU, which is a lean and mean combinational machine. Thus we have a lightning fast 

calculator that depends on a sluggish data store for supplying inputs and consuming outputs. 

The result may well lead to what is sometimes called starvation, which is what happens when a 

processor is denied the resources it needs to complete its work.  

Clearly, if we could have placed a few high-speed registers inside the CPU itself, right 

next to the ALU, we could have saved ourselves a great deal of time and overhead. There is 

another, subtle but critically important advantage for using CPU-resident registers. In order to 

specify an instruction that includes a memory register, like Memory[addr]=value, we must 

supply a memory address, which typically requires many bits. In the 16-bit Hack platform, this 

technical detail alone forces us to use two machine instructions, and two clock cycles, even for 

preforming mundane tasks like Memory[addr]=0 or Memory[addr]=1. 

In contrast, since there are normally only a few CPU-resident registers, identifying each 

one of them requires only a few bits. Therefore, an operation like someCPURegister=0 or 
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someCPURegister=1 requires only one machine instruction, and one cycle. To sum up, CPU-

resident registers save unnecessary memory access, and allow using thinner instruction formats, 

resulting in faster throughput. The remainder of this section describes the registers that CPU’s 

typically use. 

Data registers: These registers give the CPU short-term memory services. For example, if a 

program wants to calculate (a − b) ⋅ c, we must first compute and remember the value of (a − b). 

In principle, this temporary result can be stored in some memory register. Clearly, a much more 

sensible solution is to store it locally inside the CPU, using a data register. Typically, CPU’s 

use at least one and up to 32 data registers. 

Address registers: Many machine language instructions involve memory access: reading data, 

writing data, and fetching instructions. In any one of these operations, we must specify which 

memory register we wish to operate on. This is done by supplying an address. In some cases, 

the address is coded as part of the instruction, while in other cases the address is specified, or 

computed, by some previous instruction. In the latter case, the address must be stored 

somewhere. This is done using a CPU-resident chip called address register. 

Unlike regular registers, the output of an address register is typically connected to the 

address input of a memory device. Therefore, placing a value in the address register has the side 

effect of selecting a particular memory register, and this register makes itself available to 

subsequent instructions designed to manipulate it. For example, suppose we wish to set 

Memory[17] to 1. In the Hack language, this can be done using the pair of instructions @17 

(which sets A=17 and makes the M mnemonic stand for Memory[17]), followed by M=1 (which 

sets the selected memory register to 1). 

In addition to supporting this fundamental addressing operation, an address register is, 

well, a register. Therefore, if needed, it can be used as yet another data register. For example, 
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suppose we wish to set the D register to 17. This can be done using the pair of instructions @17, 

followed by D=A. Here we use A not as an address register, but rather as a data register. The fact 

that Memory[17] was selected as a side effect of @17 is completely ignored. 

Program counter: When executing a program, the CPU must always keep track of the address 

of the instruction that must be fetched and executed next. This address is kept in a special 

register called program counter, or PC. The contents of the PC is computed and updated as a 

side effect of executing the current instruction, as we elaborate later in the chapter. 

5.1.6 Input and Output 

Computers interact with their external environments using a diverse array of input and output 

(I/O) devices. These include screens, keyboards, disks, printers, scanners, network interface 

cards, and so on, not to mention the bewildering array of proprietary components that embedded 

computers are called to control in automobiles, cameras, medical devices, and so on. There are 

two reasons why we don’t concern ourselves here with the low-level architecture of these 

various devices. First, every one of them represents a unique piece of machinery requiring a 

unique knowledge of engineering. Second, and for this very same reason, computer scientists 

have devised clever schemes to make all these different devices look exactly the same to the 

computer. The key trick in managing this complexity is called memory-mapped I/O. 

 The basic idea is to create a binary emulation of the I/O device, making it “look” to the 

CPU as if it were a regular memory segment. In particular, each I/O device is allocated an 

exclusive area in memory, becoming its “memory map.” In the case of an input device like a 

keyboard, the memory map is made to continuously reflect the physical state of the device: 

when the user presses a key on the keyboard, a binary code representing that key appears in the 

keyboard’s memory map. In the case of an output device like a screen, the screen is made to 

continuously reflect the state of its designated memory map: when we write a bit in the screen’s 
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memory map, a certain pixel turns on or off on the screen. The I/O devices are “refreshed” from 

the memory (and vice versa) several times per second, so the response time from the user’s 

perspective is almost instantaneous. Programmatically, the key implication is that computer 

programs can access any I/O device by simply manipulating selected registers in their 

designated memory areas. 

Obviously, this arrangement is based on several agreed-upon contracts. First, the data that 

drives each I/O device must be serialized, or “mapped”, on the computer’s memory, hence the 

name “memory map”.  For example, the screen, which can be viewed as a 2-dimensional grid of 

pixels, must be mapped on a 1-dimensional vector of fixed-size memory registers. Second, each 

I/O device is required to support some agreed-upon interaction protocol, so that programs will 

be able to access it in a predictable manner. For example, it should be decided, and agreed-upon, 

which binary codes should represent which keys on the keyboard. As a side comment, given the 

multitude of computer platforms, I/O devices, and different hardware and software vendors, one 

can appreciate the crucial role that standards play in determining these low-level interaction 

contracts. 

 The practical implications of a memory-mapped I/O architecture are significant: The 

design of the CPU and the overall platform can be totally independent of the number, nature, or 

make of the I/O devices that interact, or will interact, with the computer. Whenever we want to 

connect a new I/O device to the computer, all we have to do is allocate to it a new memory map 

and “take note” of its base address (these one-time configurations are typically done by the 

operating system). From this point onward, any program that wants to manipulate this I/O 

device can do so—all it needs to do is manipulate selected registers in the memory map 

designated to represent the device. 
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The architectural framework described thus far in the chapter is characteristic of any general-

purpose computer system. We now turn to describe one specific example of this architecture: 

the Hack computer. 

5.2 The Hack Hardware Platform: Specification 

5.2.1 Overview 

The Hack platform is a 16-bit von Neumann machine, designed to execute programs written in 

the Hack machine language presented in chapter 4. In order to do so, the Hack platform consists 

of a CPU, two separate memory modules serving as instruction memory and data memory, and 

two memory-mapped I/O devices: a screen and a keyboard.  

 The Hack computer executes programs that reside in an instruction memory. In physical 

implementations of the Hack platform, this memory can be implemented using a ROM chip that 

is pre-loaded with the required program. Software-based simulators of the Hack computer are 

expected to support this functionality by providing means for loading the instruction memory 

from a text file containing a program written in the Hack machine language. 

 The Hack CPU consists of the ALU built in project 2 and three registers called data 

register (D), address register (A), and program counter (PC), identical to the 16-bit registers 

built in project 3. While the D-register is used solely for storing data values, the A-register serves 

three different purposes, depending on the context in which it is used: storing a data value (just 

like the D-register), pointing at an address in the instruction memory, or pointing at an address 

in the data memory. More about this, later. 

The Hack CPU is designed to execute instructions written in the Hack machine language. 

These instructions have the 16-bit format “ixxaccccccdddjjj”. The i-bit (also known as 

opcode) codes the instruction type, which is either 0 for an A-instruction or 1 for a C-instruction. 

In case of an A-instruction, the instruction is treated as a 16-bit binary value which is loaded 
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into the A register. In case of a C-instruction, the instruction is treated as a sequence of control 

bits that determine which function the ALU should computer, and in which registers the 

computed value should be stored. In the course of executing any one of these instructions, the 

CPU also figures out which instruction in the program should be fetched and executed next. 

We now turn to specify the various components of the Hack hardware platform.  

5.2.2 Central Processing Unit (CPU) 

The CPU of the Hack platform is designed to execute 16-bit instructions according to the Hack 

machine language specification presented in chapter 4. The Hack CPU expects to be connected 

to two separate memory modules: an instruction memory, from which it fetches instructions for 

execution, and a data memory, from which it can read, and into which it can write, data values. 

Diagram 5.2 gives the complete CPU specification. 

5.2.3 Instruction Memory 

The Hack instruction memory is implemented in a direct-access Read-Only Memory device, 

also called ROM. The Hack ROM consists of 32K addressable 16-bit registers, as shown in 

diagram 5.3. 

5.2.4 Input / Output 

Access to the input/output devices of the Hack computer is made possible by the computer’s 

data memory, a read-write RAM device consisting of 32K addressable 16-bit registers. In 

addition to serving as the computer’s general-purpose data store, the data memory also 

interfaces between the CPU and the computer’s input/output devices, as we now turn to specify.  

In order to facilitate interaction with a user, the Hack platform can be connected to two 

peripheral devices: a screen and a keyboard. Both devices interact with the computer platform 

through memory-mapped buffers. Specifically, screen images can be drawn and probed by  
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/**	The Hack Central Processing Unit consists of an ALU, two registers named A and D, and a program 
counter named PC	(these	internal	chip-parts	are	not	shown	in	the	diagram). The inM 
input and outM output hold the values referred to as “M” in the Hack instruction syntax. The addressM 
output holds the memory address to which outM should be written. 

 The CPU is designed to fetch and execute instructions written in the Hack machine language. If 
instruction is an A-instruction, the CPU loads the 16-bit constant that the instruction represents into the 
A register. If instruction is a C-instruction, then (i) the CPU causes the ALU to perform the computation 
specified by the instruction, and (ii) the CPU causes this value to be stored in the subset of {A,D,M} registers 
specified by the instruction. If one of these registers is M, the CPU asserts the writeM control bit output 
(when writeM	is	0, any value may appear in outM).	

When the reset	input	is	0, the CPU uses the ALU output and the jump directive specified by the 
instruction to compute the address of the next instruction, and emits this address to the pc output. If the 
reset	input	is	1, the CPU sets pc to 0. 	

The outM and writeM outputs are combinational, and are affected instantaneously by the instruction’s 
execution. The addressM and pc outputs are clocked: although they are affected by the instruction’s 
execution, they commit to their new values only in the next time step. */	
CHIP	CPU	

IN		
			instruction[16],	//	Instruction	to	execute.	
			inM[16],									//	Value	of	Mem[A],	the	instruction’s	M	input	
			reset;											//	Signals	whether	to	continue	executing	the	current	program	
																				//	(reset==1)	or	restart	the	current	program	(reset==0).	

OUT	
			outM[16],						//	Value	to	write	to	Mem[addressM],	the	instruction’s	M	output	
			addressM[15],		//	In	which	address	to	write?	
			writeM,								//	Write	to	the	Memory?	

				pc[15];								//	address	of	next	instruction	

	
Diagram 5.2: The Hack Central Processing Unit (CPU) interface 



 14 

writing and reading, respectively, 16-bit values in a designated memory segment called screen 

memory map. Similarly, which key is presently pressed on the keyboard can be determined by 

probing a designated memory register called keyboard memory map. 

The memory maps interact with their respective I/O devices via peripheral logic that 

resides outside the computer. The contract is as follows: When a bit is changed in the screen’s 

memory map, a respective black and white pixel is drawn on the physical screen. When a key is 

pressed on the physical keyboard, the respective scan-code of this key appears in the keyboard’s 

memory map.  

 
 

/** The instruction memory of the Hack computer, implemented as a 
read-only memory of 32K registers, each 16-bit wide. 
Performs the operation out = ROM32K[address]. 
In words: outputs the 16-bit value stored in the register selected by the 
address input. This value is taken to be the current instruction. 
It is assumed that the chip is preloaded with a program written in the 
Hack machine language. 
Software-based simulators of the Hack computer are expected to 
provide means for loading the chip with a Hack program, either 
interactively, or using a test script. */ 
CHIP	ROM32K	

IN		address[15];	

OUT	out[16];	

 
Diagram 5.3:  The Hack Instruction Memory interface. 
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We now turn to specifying the built-in chips that interface between the hardware platform and 

the I/O devices. This will set the stage for specifying the complete memory module that embeds 

these chips. 

Screen: The Hack computer can interact with a physical screen consisting of 256 rows of 512 

black-and-white pixels each. The computer interfaces with the physical screen via a memory 

map, implemented by a RAM chip called Screen. This chip behaves like regular memory, 

meaning that it can be read and written to. In addition, it features the side effect that any bit 

written to it is reflected as a pixel on the physical screen (1 = black, 0 = white). The exact 

mapping between the memory map and the physical screen is specified in diagram 5.4. 

/** The Screen (memory map) functions exactly like a 16-bit, 8K RAM: 

             (1) out(t) = Screen[address(t)](t) 
             (2) if load(t) then Screen[address(t)](t+1) = in(t) 

The chip implementation has the side effect of continuously refreshing a physical 
screen. The physical screen consists of 256 rows and 512 columns of black and white 
pixels (simulators of the Hack computer are expected to simulate this screen). 

Each row in the physical screen, starting at the top left corner, is represented in the 
Screen memory map by 32 consecutive 16-bit words. Thus the pixel at row r from the 
top and column c from the left (0 ≤ r ≤ 255, 0 ≤ c ≤ 511) is mapped on the c%16 bit 
(counting from LSB to MSB) of the 16-bit word stored in Screen[r * 32 + c / 16].  */ 

CHIP	Screen	

IN	
				in[16],						//	what	to	write	
				address[13];	//	where	to	write	(or	read)	
				load,								//	write-enable	bit	

OUT	
				out[16];					//	Screen	value	at	the	given	address	

 
Diagram 5.4: The Hack Screen chip interface 
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Keyboard: The Hack computer can interact with a physical keyboard, like that of a personal 

computer. The computer interfaces with the physical keyboard via a chip called Keyboard. 

When a key is pressed on the physical keyboard, a unique 16-bit scan-code is emitted to the 

output of the Keyboard chip. When no key is pressed, the chip outputs 0. The character set of 

the Hack platform is given in Appendix C, along with the scan-code of each character. 

 
 

/** The Keyboard (memory map) is connected to a standard, physical 
keyboard. It is made to output the 16-bit scan-code associated with the 
key which is presently pressed on the physical keyboard, or 0 if no key is 
pressed. 
The keyboard scan-codes are given in Appendix C of the book. 
Simulators of the Hack computer are expected to implement the contract 
described above. */ 
CHIP	Keyboard	

OUT	out[16];			//	The	scan-code	of	the	pressed	key,	
															//	or	0	if	no	key	is	currently	pressed.	

 
Diagram 5.5: The Hack Keyboard chip interface 

 

5.2.6 Data Memory 

The overall address space known as the Hack data memory is realized by a chip called Memory. 

This chip is essentially a package of three 16-bit storage devices: a RAM (16K registers, for 

regular data storage), a Screen (8K registers, acting as the screen memory map), and a 

Keyboard (1 register, acting as the keyboard memory map). The complete specification is given 

in diagram 5.6. 
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/** The complete address space of the Hack computer's data memory, including RAM and memory-
mapped I/O. Facilitates read and write operations, as follows: 

       Read:    out(t) = Mem[address(t)](t) 

       Write:   if load(t) then Mem[address(t)](t+1) = in(t) 

In words: the chip always outputs the value stored at the memory location specified by address. 

If load==1, the in value is loaded into the register specified by address. This value becomes available 
through the out output from the next time step onward. 
The memory access rules are as follows: 
Only the top 16K+8K+1 words of the address space are used. 
0x0000-0x5FFF: accessing an address in this range results in accessing the RAM. 
0x4000-0x5FFF: accessing an address in this range results in accessing the Screen. 
							0x6000: accessing this address results in accessing the Keyboard. 
						> 0x6000: accessing an address in this range is invalid. */ 

CHIP	Memory	

IN			in[16],	load,	address[15];	

	OUT		out[16];	

	

Diagram 5.6: The Hack Data Memory interface 
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5.2.7 Computer 

The topmost chip in the Hack hardware hierarchy is a Computer chip consisting of a CPU, an 

instruction memory, and a data memory. The computer can interact with a screen and a 

keyboard. The complete specification is given in diagram 5.7. 

 

 
 

/** The HACK computer, consisting of CPU, ROM and Memory parts 
(these	internal	chip-parts	are	not	shown	in	the	diagram). 
When reset==0, the program stored in the computer's ROM executes. 
When reset==1, the execution of the program restarts. 
Thus, to start a program's execution, the reset input must be pushed "up" 
(signaling 1) and "down" (signaling 0). 
From this point onward, the user is at the mercy of the software. In 
particular, depending on the program's code, the screen may show some 
output, and the user may be able to interact with the computer via the 
keyboard. */ 

CHIP	Computer	

IN			reset;	

	

Diagram 5.7: Interface of the topmost chip in the 
 Hack hardware platform, named Computer. 
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5.3 Implementation 

This section outlines how a hardware platform can be built to realize the Hack computer 

specification described in the previous section. As usual, we don’t give exact building 

instructions. Rather, we expect readers to discover and complete the implementation details on 

their own. All the chips described below can be built in HDL and simulated on a personal 

computer, using the hardware simulator supplied with the book. As usual, technical details are 

given in the final Project section of this chapter. 

5.3.1 The Central Processing Unit 

When we set out to implement the Hack CPU, our objective is to come up with a logic gate 

architecture capable of (i) executing a given Hack instruction, and (ii) determining which 

instruction should be fetched and executed next. In order to do so, the proposed CPU 

implementation includes an ALU chip capable of computing arithmetic/logical functions, a set of 

registers, a program counter, and some additional gates designed to help decode, execute, and 

fetch instructions. Since all these building blocks were already built in previous chapters, the 

key question that we face now is how to arrange and connect them in a way that effects the 

desired CPU operation. One possible configuration is illustrated in diagram 5.8. 

The architecture shown in diagram 5.8 is used to perform three classical CPU tasks: decoding 

the current instruction, executing the current instruction, and deciding which instruction to fetch 

and execute next. We now turn to describe these three tasks. 
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Diagram 5.8: Proposed CPU implementation, showing an “incoming” 16-bit instruction 
denoted cccccccccccccccc. The instruction bits are labeled c, since in the case of a C-
instruction, the CPU logic treats them as control bits that are extracted from the 
instruction and routed to different chip-parts of the CPU. In particular, in this diagram, 
every c symbol entering a chip-part stands for some control bit, extracted from the 
instruction (in the case of the ALU, the “c’s” input stands for the 6 control bits that 
instruct the ALU what to compute, and the “c’s” output stands for its zr and ng outputs). 
Taken together, the distributed behaviors that these control bits effect throughout the 
CPU architecture end up executing the instruction.  
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Instruction decoding 

The 16-bit value of the CPU’s instruction input represents either an A-instruction or a C-

instruction. In order to figure out the semantics of this instruction, we can parse, or unpack it, 

into the following fields: “ixxaccccccdddjjj”. The i-bit (also known as opcode) codes the 

instruction type, which is either 0 for an A-instruction or 1 for a C-instruction. In case of an A-

instruction, the entire instruction represent the 16-bit value of the constant that should be loaded 

into the A register. In case of a C-instruction, the a- and c-bits code the comp part of the 

instruction, while the d- and j-bits code the dest and jump parts of the instruction, respectively 

(the x-bits are not used, and can be ignored).  

Instruction Execution 

The decoded fields of the instruction (i-, a-, c-, d-, and j-bits) are routed simultaneously to 

various parts of the CPU architecture, where they cause different chip-parts to do what they are 

supposed to do in order to execute either the A- or the C-instruction, as mandated by the Hack 

machine language specification. In the case of a C-instruction, the single a-bit determines 

whether the ALU will operate on the A register input or on the M input, and the six c-bits 

determine which function the ALU will compute. The three d-bits are used to determine which 

registers should “accept” the ALU resulting output, and the three j-bits are used to for branching 

control, as we now turn to describe.	

Instruction Fetching 

As a side effect of executing the current instruction, the CPU must determine, and emit, the 

address of the instruction that should be fetched and executed next. The key element in this sub-

task is the Program Counter—a CPU chip-part whose role is to always store the address of the 

next instruction. Later in the chapter we’ll describe how we connect the pc output of the CPU 

into the address input of the instruction memory; this connection causes the instruction 
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memory to always emit the instruction that ought to be fetched and executed next. This output 

is connected to the instruction input of the CPU, closing the fetch-execute cycle. 

 According to the Hack computer specification, the current program is stored in the 

instruction memory, starting at address 0. Hence, if we wish to start (or restart) a program’s 

execution, we should reset the Program Counter to 0. That’s why in diagram 5.8 the reset 

input of the CPU is fed directly into the reset input of the PC chip. If we’ll assert this bit, we’ll 

effect PC=0, causing the computer to fetch and execute the first instruction in the program. What 

should we do next? Normally, we’d like to execute the next instruction in the program. 

Therefore, the default operation of the Program Counter is PC++. 

But what if the instruction dictates to effect a “jump n” operation, where n is the address 

of an instruction located anywhere in the program? According to the Hack language 

specification, a “jump n” operation is realized using a sequence of two instructions. First, we 

issue the A-instruction @n, which sets the A register to n; next, we issue a C-instruction that 

includes a jump directive. According to the language specification, execution always branches 

to the instruction that the A register points at. Thus, when implementing the CPU, one of our 

challenges is to come up with a logic gate architecture that realizes the following behavior: if 

jump then PC = A else PC++. The value of the Boolean expression jump depends on the 

instruction’s j-bits and on the ALU output. 

How to implement this logic? The answer is hinted by diagram 5.8. Note that the output 

of the A register feeds into the input of the PC register. Recall that the latter chip has a load-bit 

that enables it to accept a new input value. Thus, if we’ll assert this load-bit, we’ll cause the 

architecture to effect the operation PC=A rather than the default operation PC++. We should do 

this only if we have to realize a jump. Now, the question of weather or not a jump should be 

realized is answered by two signals: (i) the j-bits of the current instruction, specifying the jump 
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condition, and (ii) the ALU output-bits zr and ng, which can be used to determine if the specified 

condition is satisfied, or not. 

We’ll stop here, lest we rob readers the pleasure of discovering the missing details and 

completing the CPU implementation on their own. 

5.3.2 Memory 

The Hack Memory chip is essentially an amalgamation of three lower-level chips: RAM16K, 

Screen, and Keyboard. Yet this modularity is strictly implicit: users of the Memory chip, like 

Hack programmers or programmers who write compilers that generate Hack code, see a single 

address space, spanning from address 0 to address 24576 (0×0000 to 0×6000 in hexa). 

The implementation of the Memory chip (as shown in diagram 5.6) should realize this 

continuum effect. For example, if the address input of the Memory chip happens to be 16384, 

the chip logic should end up accessing address 0 in the Screen chip, and so on. This can be 

done using similar techniques to those used in chapter 3 to integrate small RAM units into 

larger ones. 

5.3.3 Computer 

We have reached the end of our hardware journey. The topmost Computer chip can be realized 

using three previously built chip-parts: a CPU, a data Memory, and an instruction memory named 

ROM32K. Diagram 5.9 gives the details. 
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Diagram 5.9: Proposed implementation of the platform’s topmost chip, Computer.  
 
 

 
5.4 Project 

Objective: Build the Hack computer platform, culminating in the topmost Computer chip. 

Resources: The only resources that you need for completing this project are the hardware 

simulator supplied with the book and the test materials described here. The computer platform 

should be written in HDL and tested using the hardware simulator. 

Contract: Build a hardware platform capable of executing programs written in the Hack 

machine language specified in chapter 4. Demonstrate the platform’s operations by having your 

Computer chip run the three programs described below. 

Test Programs: A natural way to test the overall Computer chip implementation is to have it 

execute some sample programs written in the Hack machine language. In order to run such a 
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test, one can write a test script that loads the Computer chip into the hardware simulator, loads a 

program from an external text file into its ROM chip, and then runs the clock enough cycles to 

execute the program. We supply the following test programs (as well as all the relevant test 

scripts and compare files):  

• Add.hack: Adds the two constants 2 and 3 and writes the result in RAM[0]. 

• Max.hack: Computes the maximum of RAM[0] and RAM[1] and writes the result in RAM[2]. 

• Rect.hack: Draws on the screen a rectangle of RAM[0] rows of 16 pixels each. 

Before testing your Computer chip on any one of the above programs, read the test script 

associated with the program and be sure to understand the instructions given to the simulator. If 

needed, consult Appendix B. 

Steps: Implement the hardware platform in the following order: 

Memory: Composed from three chips: RAM16K, Screen, and Keyboard. The Screen and the 

Keyboard are available as built-in chips and there is no need to build them. Although the 

RAM16K chip was built in project 3, we recommend using its built-in version, as it provides a 

debugging-friendly GUI. 

CPU: The central processing unit can be built according to the proposed implementation given 

in figure 5.8, using the ALU and Register chips built in chapters 2 and 3, respectively. We 

recommend using the built-in versions of these chips, in particular ARegister and DRegister. 

These chips have exactly the same functionality of the Register chip specified in chapter 3, 

plus GUI side effects. 

 In the course of implementing the CPU, you may be tempted to specify and build some 

internal chips of your own. Be advised that there is no need to do so; The Hack CPU can be 

implemented elegantly and efficiently using only the chip-parts that appear in diagram 5.8, plus 

some elementary logic gates built in project 1. 
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Instruction Memory: Use the built-in ROM32K chip. 

Computer: Build the topmost Computer chip using the three chip-parts shown in diagram 5.9. 

The Hardware Simulator: All the chips in this project (including the topmost Computer chip) 

can be implemented and tested using the supplied hardware simulator. Figure 5.10 is a screen 

shot of testing the Rect.hack program on a Computer chip implementation. 

 

 
 

Diagram 5.10: Testing the Computer chip on the supplied hardware simulator. The 
Rect program draws a rectangle of RAM[0] rows of 16 pixels each, all black, at the top-
left of the screen. Note that the program is error-free. Therefore, if it does not operate as 
expected, it means that the hardware platform on which it is running (Computer.hdl 
and/or, possibly, some of it’s chip-parts) is buggy. 
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5.5 Perspective 

Following the general spirit of the book, the architecture of the Hack computer is rather 

minimal. Typical computer platforms have more registers, more data types, more powerful 

ALUs, and richer instruction sets. However, these differences are mainly quantitative. From a 

qualitative standpoint, Hack is quite similar to most digital computers, as they all follow the 

same conceptual paradigm: the von Neumann architecture. 

 In terms of function, computer systems can be classified into two categories: general-

purpose computers, designed to easily switch from executing one program to another, and 

dedicated computers, usually embedded in other systems like cell phones, game consoles, 

digital cameras, weapon systems, factory equipment, and so on. For any particular application, a 

single program is burned into the dedicated computer’s ROM, and is the only one that can be 

executed (in game consoles, for example, the game software resides in an external cartridge that 

is simply a replaceable ROM module encased in some fancy package). Aside from this 

difference, general-purpose and dedicated computers share the same architectural ideas: stored 

programs, fetch-decode-execute logic, CPU, registers, program counter, and so on. 

 Unlike Hack, most general-purpose computers use a single address space for storing 

both data and instructions. In such architectures, the instruction address as well as the optional 

data address specified by the instruction must be fed into the same destination: the single 

address input of the shared address space. Clearly, this cannot be done at the same time. The 

standard solution is to base the computer implementation on a two-cycle logic. During the fetch 

cycle, the instruction address is fed to the address input of the memory, causing it to 

immediately emit the current instruction, which is then stored in an instruction register. In the 

subsequent execute cycle, the instruction is decoded, and the optional data address inferred from 

it is fed to the memory’s address input, allowing the instruction to manipulate the selected 

memory location. In contrast, the Hack architecture is unique in that it partitions the address 
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space into two separate parts, allowing a single-cycle fetch-execute logic. The price of this 

simpler hardware design is that programs cannot be changed dynamically. 

 In terms of I/O, the Hack keyboard and screen are rather spartan. General-purpose 

computers are typically connected to multiple I/O devices like printers, disks, network 

connections, and so on. Also, typical screens are obviously much more powerful than the Hack 

screen, featuring more pixels, many brightness levels in each pixel, and colors. Still, the basic 

principle that each pixel is controlled by a memory-resident binary value is maintained: instead 

of a single bit controlling the pixel’s black or white color, several bits are devoted to control the 

level of brightness of each of the three primary colors that, together, produce the pixel’s 

ultimate color. Likewise, the memory mapping of the Hack screen is simplistic. Instead of 

mapping pixels directly into bits of memory, most modern computers allow the CPU to send 

high-level graphic instructions to a graphics card that controls the screen. This way, the CPU is 

relieved from the tedium of drawing figures like circles and polygons directly—the graphics 

card takes care of this task using its own embedded chip-set. 

 Finally, it should be stressed that most of the effort and creativity in designing computer 

hardware is invested in achieving better performance. Thus, hardware architecture courses and 

textbooks typically evolve around such issues as implementing memory hierarchies (cache), 

better access to I/O devices, pipelining, parallelism, instruction prefetching, and other 

optimization techniques that were sidestepped in this chapter. 

 Historically, attempts to enhance the processor’s performance have led to two main 

schools of hardware design. Advocates of the Complex Instruction Set Computing (CISC) 

approach argue for achieving better performance by providing rich and elaborate instruction 

sets. Conversely, the Reduced Instruction Set Computing (RISC) camp uses simpler instruction 

sets in order to promote as fast a hardware implementation as possible. The Hack computer 
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does not enter this debate, featuring neither a strong instruction set nor special hardware 

acceleration techniques. 

 


