
Appendix B: Test Scripting Language

Mistakes are the portals of discovery.

—James Joyce (1882–1941)

Testing is a critically important element of systems development, and one that typi-

cally gets little attention in computer science education. In this book we take testing

very seriously. In fact, we believe that before one sets out to develop a new hardware

or software module P, one should first develop a module T designed to test it. Fur-

ther, T should then become part of P’s official development’s contract.

As a matter of best practice, the ultimate test of a newly designed module should

be formulated not by the module’s developer, but rather by the architect who speci-

fied the module’s interface. Therefore, for every chip or software system specified in

the book, we supply an official test program, written by us. Although you are wel-

come to test your work in any way you see fit, the contract is such that eventually,

your implementation must pass our tests.

In order to streamline the definition and execution of the numerous tests scattered

all over the book projects, we designed a uniform test scripting language. This lan-

guage works almost the same across all the simulators supplied with the book:

m Hardware simulator: used to simulate and test chips written in HDL

m CPU emulator: used to simulate and test machine language programs

m VM emulator: used to simulate and test programs written in the VM language

Every one of these simulators features a rich GUI that enables the user to test the

loaded chip or program interactively, using graphical icons, or batch-style, using a

test script. A test script is a series of commands that (a) load a hardware or soft-

ware module into the relevant simulator, and (b) subject the module to a series of

preplanned (rather than ad hoc) testing scenarios. In addition, the test scripts feature

commands for printing the test results and comparing them to desired results, as

defined in supplied compare files. In sum, a test script enables a systematic, repli-

cable, and documented testing of the underlying code—an invaluable requirement in

any hardware or software development project.

Important We don’t expect students to write test scripts. The test scripts necessary

to test all the hardware and software modules mentioned in the book are supplied by us

and available on the book’s Web site. Therefore, the chief purpose of this appendix is

to explain the syntax and logic of the supplied test scripts, as needed.

B.1 File Format and Usage

The act of testing a hardware or software module using any one of the supplied

simulators involves four types of files:

Xxx.yyy: where Xxx is the module name and yyy is either hdl, hack, asm, or

vm, standing respectively for a chip definition written in HDL, a program written in

the Hack machine language, a program written in the Hack assembly language, or a

program written in the VM virtual machine language;

Xxx.tst: this test script walks the simulator through a series of steps designed to

test the code stored in Xxx.yyy;

Xxx.out: this optional output file keeps a printed record of the actual simulation

results;

Xxx.cmp: this optional compare file contains a presupplied record of the desired

simulation results.

All these files should be kept in the same directory, which can be conveniently named

xxx. In all simulators, the ‘‘current directory’’ refers to the directory from which the

last file has been opened in the simulator environment.

White space: Space characters, newline characters, and comments in test scripts

(Xxx.tst files) are ignored. Test scripts are not case sensitive, except for file and di-

rectory names.

Comments: The following comment formats can appear in test scripts:

// Comment to end of line

/* Comment until closing */

/** API documentation comment */

298 Appendix B

Usage: In all the projects that appear in the book, the files Xxx.tst, Xxx.out, and

Xxx.cmp are supplied by us. These files are designed to test Xxx.yyy, whose devel-

opment is the essence of the project. In some cases, we also supply a skeletal version

of Xxx.yyy, for example, an HDL interface with a missing implementation part. All

the files in all the projects are plain text files that can be viewed and edited using

plain text editors.

Typically, one starts a simulation session by loading the supplied Xxx.tst script

file into the relevant simulator. Typically, the first commands in the script instruct

the simulator to load the code stored in Xxx.yyy and then, optionally, initialize an

output file and a compare file. The remaining commands in the script run the actual

tests, as we elaborate below.

B.2 Testing Chips on the Hardware Simulator

The hardware simulator supplied with the book is designed for testing and simulating

chip definitions written in the Hardware Description Language (HDL) described in

appendix A. Chapter 1 provides essential background on chip development and

testing, and thus it is recommended to read it first.

B.2.1 Example

The script shown in figure B.1 is designed to test the EQ3 chip defined in figure

A.1. A test script normally starts with some initialization commands, followed by a

series of simulation steps, each ending with a semicolon. A simulation step typically

instructs the simulator to bind the chip’s input pins to some test values, evaluate the

chip logic, and write selected variable values into a designated output file. Figure B.2

illustrates the EQ3.tst script in action.

B.2.2 Data Types and Variables

Data Types Test scripts support two data types: integers and strings. Integer con-

stants can be expressed in hexadecimal (%X prefix), binary (%B prefix), or decimal

(%D prefix) format, which is the default. These values are always translated into

their equivalent 2’s complement binary values. For example, the commands set

al %B1111111111111111, set a2 %XFFFF, set a3 %D-1, set a4 -1 will set the

four variables to the same value: a series of sixteen 1’s, representing ‘‘minus one’’ in

299 Test Scripting Language

decimal. String values (%S prefix) are used strictly for printing purposes and cannot

be assigned to variables. String constants must be enclosed by ‘‘ ’’.

The simulator clock (used in testing sequential chips only) emits a series of values

denoted 0, 0þ, 1, 1þ, 2, 2þ, 3, 3þ, and so forth. The progression of these clock

cycles (also called time units) is controlled by two script commands called tick and

tock. A tick moves the clock value from t to tþ, and a tock from tþ to tþ 1,

bringing upon the next time unit. The current time unit is stored in a system variable

called time.

Script commands can access three types of variables: pins, variables of built-in

chips, and the system variable time.

Pins: Input, output, and internal pins of the simulated chip. For example, the

command set in 0 sets the value of the pin whose name is in to 0.

Variables of built-in chips: Exposed by the chip’s external implementation. See sec-

tion B.2.4 for more details.

Time: The number of time units that elapsed since the simulation started running

(read-only).

/* EQ3.tst: tests the EQ3.hdl program. The EQ3 chip should

return true if its two 3-bit inputs are equal and false

otherwise. */

load EQ3.hdl, // Load the HDL program into the simulator

output-file EQ3.out, // Write script outputs to this file

compare-to EQ3.cmp, // Compare script outputs to this file

output-list a b out; // Each subsequent output command should

// print the values of the variables

// a, b, and out

set a %B000, set b %B000, eval, output;

set a %B111, set b %B111, eval, output;

set a %B111, set b %B000, eval, output;

set a %B000, set b %B111, eval, output;

set a %B001, set b %B000, eval, output;

// Since the chip has two 3-bit inputs,

// an exhaustive test requires 2^3*2^3=64 such scenarios.

Figure B.1 Testing a chip on the hardware simulator.

300 Appendix B

B.2.3 Script Commands

Command Syntax A script is a sequence of commands. Each command is termi-

nated by a comma, a semicolon, or an exclamation mark. These terminators have the

following semantics:

m Comma (,): terminates a script command.

m Semicolon (;): terminates a script command and a simulation step. A simulation

step consists of one or more script commands. When the user instructs the simulator

Figure B.2 Typical hardware simulation session, shown at the script’s end. The loaded script
is identical to EQ3.tst from figure B.1, except that some white space was added to improve
readability.

301 Test Scripting Language

to ‘‘single-step’’ via the simulator’s GUI, the simulator executes the script from the

current command until a semicolon is reached, at which point the simulation is

paused.

m Exclamation mark (!): terminates a script command and stops the script execu-

tion. The user can later resume the script execution from that point onward. This

option is typically used to facilitate interactive debugging.

It is convenient to organize the script commands in two conceptual sections. ‘‘Set up

commands’’ are used to load files and initialize global settings. ‘‘Simulation com-

mands’’ walk the simulator through a series of tests.

Setup Commands

load Xxx.hdl: Loads the HDL program stored in Xxx.hdl into the simulator.

The file name must include the .hdl extension and must not include a path specifi-

cation. The simulator will try to load the file from the current directory, and, failing

that, from the simulator’s builtIn directory, as described in section A.3.

output-file Xxx.out: Instructs the simulator to write further output to the

named file, which must include an .out extension. The output file will be created in

the current directory.

output-list v1; v2; . . . : Instructs the simulator what to write to the output file

in every subsequent output command in this script (until the next output-list

command, if any). Each value in the list is a variable name followed by a format-

ting specification. The command also produces a single header line consisting of

the variable names. Each item v in the output-list has the syntax variable format

padL.len.padR. This directive instructs the simulator to write padL spaces, then the

current variable value in the specified format using len columns, then padR spaces,

then the divider symbol ‘‘|’’. Format can be either %B (binary), %X (hexa), %D (deci-

mal) or %S (string). The default format specification is %B1.1.1.

For example, the CPU.hdl chip of the Hack platform has an input pin named reset,

an output pin named pc (among others), and a chip part named DRegister (among

others). If we want to track the values of these variables during the chip’s execution,

we can use something like the following command:

Output-list time%S1.5.1 // System variable

reset%B2.1.2 // Input pin of the chip

pc%D2.3.1 // Output pin of the chip

DRegister[] %X3.4.4 // State of this built-in part

302 Appendix B

(Sate variables of built-in chips are explained here.) This command may produce the

following output (after two subsequent output commands):

| time |reset| pc |DRegister[]|

| 20+ | 0 | 21 | FFFF |

| 21 | 0 | 22 | FFFF |

compare-to Xxx.cmp: Instructs the simulator that each subsequent output line

should be compared to its corresponding line in the specified comparison file (which

must include the .cmp extension). If any two lines are not the same, the simulator

displays an error message and halts the script execution. The compare file is assumed

to be present in the current directory.

Simulation Commands

set variable value: Assigns the value to the variable. The variable is either a pin

or an internal variable of the simulated chip or one of its chip parts. The widths of

the value and the variable must be compatible. For example, if x is a 16-bit pin and y

is a 1-bit pin, then set x 153 is valid whereas set y 153 will yield an error and halt

the simulation.

eval: Instructs the simulator to apply the chip logic to the current values of the

input pins and compute the resulting output values.

output: This command causes the simulator to go through the following logic:

1. Get the current values of all the variables listed in the last output-list

command.

2. Create an output line using the format specified in the last output-list

command.

3. Write the output line to the output file.

4. (if a compare file has been previously declared via the compare-to command):

If the output line differs from the current line of the compare file, display an error

message and stop the script’s execution.

5. Advance the line cursors of the output file and the compare file.

tick: Ends the first phase of the current time unit (clock cycle).

tock: Ends the second phase of the current time unit and embarks on the first

phase of the next time unit.

repeat num {commands}: Instructs the simulator to repeat the commands enclosed

by the curly brackets num times. If num is omitted, the simulator repeats the com-

mands until the simulation has been stopped for some reason.

303 Test Scripting Language

while Boolean-condition {commands}: Instructs the simulator to repeat the com-

mands enclosed in the curly brackets as long as the Boolean-condition is true. The

condition is of the form x op y where x and y are either constants or variable names

and op is one of the following: =, >, <, >=, <=, <>. If x and y are strings, op can be

either = or <>.

echo text: Instructs the simulator to display the text string in the status line (which

is part of the simulator GUI). The text must be enclosed by ‘‘ ’’.

clear-echo: Instructs the simulator to clear the status line.

breakpoint variable value: Instructs the simulator to compare the value of the

specified variable to the specified value. The comparison is performed after the exe-

cution of each script command. If the variable contains the specified value, the exe-

cution halts and a message is displayed. Otherwise, the execution continues normally.

clear-breakpoints: Clears all the previously defined breakpoints.

built-in-chip method argument(s): External implementations of built-in chips can

expose methods that perform chip-specific operations. The syntax of the allowable

method calls varies from one built-in chip to another and is documented next.

B.2.4 Variables and Methods of Built-In Chips

The logic of a chip can be implemented by either an HDL program or by a high-level

programming language, in which case the chip is said to be ‘‘built-in’’ and ‘‘exter-

nally implemented.’’ External implementations of built-in chips can facilitate access

to the chip’s state via the syntax chipName[varName], where varName is an imple-

mentation-specific variable that should be documented in the chip API. The APIs of

all the built-in chips supplied with the book (as part of the Hack computer platform)

are shown in figure B.3.

For example, consider the command set RAM16K[1017] 15. If RAM16K is

the currently simulated chip or an internal part of the currently simulated chip, this

command will set its memory location number 1017 to the 2’s complement binary

value of 15. Further, since the built-in RAM16K chip happens to have GUI side

effects, the new value will also be displayed in the chip’s visual image.

If a built-in chip maintains a single-valued internal state, the current value of the

state can be accessed through the notation chipName[]. If the internal state is a

vector, the notation chipName[i] is used. For example, when simulating the built-in

Register chip, one can write script commands like set Register[] 135. This com-

mand sets the internal state of the chip to the 2’s complement binary value of 135; in

304 Appendix B

the next time unit, the Register chip will commit to this value and its output will start

emitting it.

Built-in chips can also expose implementation-specific methods that extend the

simulator’s commands repertoire. For example, in the Hack computer, programs re-

side in an instruction memory unit implemented by a chip named ROM32K. Before

one runs a machine language program on this computer, one must first load a pro-

gram into this chip. In order to facilitate this service, our built-in implementation

of ROM32K features a load file name method, referring to a text file that, hopefully,

contains machine language instructions. This chip-specific method can be accessed by

a test script via commands like ROM32K load Myprog.hack. In the chip set supplied

with the book, this is the only method supported by any of the built-in chips.

B.2.5 Ending Example

We end this section with a relatively complex test script, designed to test the topmost

Computer chip of the Hack platform. One way to test the Computer chip is to load a

machine language program into it and monitor selected values as the computer exe-

cutes the program, one instruction at a time. For example, we wrote a program that

(hopefully) computes the maximum of RAM[0] and RAM[1] and writes the result

to RAM[2]. The machine language version of this program is stored in the text file

Max.hack. Note that at the very low level in which we operate, if such a program

Chip name Exposed variables Data type/range Methods

Register Register[] 16-bit (-32768. . .32767)

ARegister ARegister[] 16-bit

DRegister DRegister[] 16-bit

PC PC[] 15-bit (0. .32767)

RAM8 RAM8[0..7] Each entry is 16-bit

RAM64 RAM64[0..63] "

RAM512 RAM512[0..511] "

RAM4K RAM4K[0..4095] "

RAM16K RAM16K[0..16383] "

ROM32K ROM32K[0..32767] " load Xxx.hack/Xxx.asm

Screen Screen[0..16383] "

Keyboard Keyboard[] 16-bit, read-only

Figure B.3 API of all the built-in chips supplied with the book.

305 Test Scripting Language

does not run properly it may be either because the program is buggy, or the hard-

ware is buggy (and, for completeness, it may also be that the test script or the hard-

ware simulator are buggy). For simplicity, let us assume that everything is error-free,

except, possibly, for the tested Computer chip.

To test the Computer chip using the Max.hack program, we wrote a test script

called ComputerMax.tst. This script loads Computer.hdl into the hardware simu-

lator and then loads the Max.hack program into its ROM32K chip part. A reason-

able way to check if the chip works properly is as follows: put some values in

RAM[0] and RAM[1], reset the computer, run the clock, and inspect RAM[2]. This,

in a nutshell, is what the script in figure B.4 is designed to do.

How can we tell that fourteen clock cycles are sufficient for executing this pro-

gram? This can be found by trial and error, starting with a large value and watching

the computer’s outputs stabilizing after a while, or by analyzing the run-time behav-

ior of the currently loaded program.

B.2.6 Default Script

The simulator’s GUI buttons (single step, run, stop, reset) don’t control the loaded

chip. Rather, they control the progression of the loaded script, which controls the

loaded chip’s operation. Thus, there is a question of what to do if the user has loaded

a chip directly into the simulator without loading a script first. In such cases, the

simulator uses the following default script:

// Default script of the hardware simulator

repeat {

tick,

tock;

}

B.3 Testing Machine Language Programs on the CPU Emulator

The CPU emulator supplied with the book is designed for testing and simulating the

execution of binary programs on the Hack computer platform described in chapter 5.

The tested programs can be written in either the native Hack code or the assembly

language described in chapter 4. In the latter case, the simulator translates the loaded

code into binary on the fly, as part of the ‘‘load program’’ operation.

306 Appendix B

/* ComputerMax.tst script.

The max.hack program should compute the maximum of

RAM[0] and RAM[1] and write the result in RAM[2]. */

// Load the Computer chip and set up for the simulation

load Computer.hdl,

output-file Computer.out,

compare-to ComputerMax.cmp,

output-list RAM16K[0] RAM16K[1] RAM16K[2];

// Load the Max.hack program into the ROM32K chip part

ROM32K load Max.hack,

// Set the first 2 cells of the RAM16K chip part to some test values

set RAM16K[0] 3,

set RAM16K[1] 5,

output;

// Run the clock enough cycles to complete the program’s execution

repeat 14 {

tick, tock,

output;

}

// Reset the Computer

set reset 1,

tick, // Run the clock in order to commit the Program

tock, // Counter (PC, a sequential chip) to the new reset value

output;

// Now re-run the program with different test values.

set reset 0, // "De-reset" the computer (committed in next tick-tock)

set RAM16K[0] 23456,

set RAM16K[1] 12345,

output;

repeat 14 {

tick, tock,

output;

}

Figure B.4 Testing the topmost Computer chip.

307 Test Scripting Language

As a convention, a script that tests a machine language program Xxx.hack

or Xxx.asm is called Xxx.tst. As usual, the simulation involves four files: the test

script itself (Xxx.tst), the tested program (Xxx.hack or Xxx.asm), an optional

output file (Xxx.out) and an optional compare file (Xxx.cmp). All these files must

reside in the same directory. This directory can be conveniently named xxx. For

more information about file structure and recommended usage, see section B.1.

B.3.1 Example

Consider the multiplication program Mult.hack, designed to effect RAM[2] ¼
RAM[0]*RAM[1]. A reasonable way to test this program is to put some values in

RAM[0] and RAM[1], run the program, and inspect RAM[2]. This logic is carried

out in figure B.5.

// Load the program and set up for the simulation

load Mult.hack,

output-file Mult.out,

compare-to Mult.cmp,

output-list RAM[2]%D2.6.2;

// Set the first 2 cells of the RAM to some test values

set RAM[0] 2,

set RAM[1] 5;

// Run the clock enough cycles to complete the program's execution

repeat 20 {

ticktock;

}

output;

// Re-run the same program with different test values

set PC 0,

set RAM[0] 8,

set RAM[1] 7;

repeat 50 { // Mult.hack is based on repetitive addition, so

ticktock; // greater multiplicands require more clock cycles

}

output;

Figure B.5 Testing a machine language program on the CPU emulator.

308 Appendix B

B.3.2 Variables

The CPU emulator, which is hardware-specific, recognizes a set of variables related

to internal components of the Hack platform. In particular, scripting commands

running on the CPU emulator can access the following elements:

A: value of the address register (unsigned 15-bit);

D: value of the data register (16-bit);

PC: value of the Program Counter register (unsigned 15-bit);

RAM[i]: value of RAM location i (16-bit);

time: Number of time units (also called clock cycles, or ticktocks) that elapsed

since the simulation started (read-only).

B.3.3 Commands

The CPU emulator supports all the commands described in section B.2.3, except for

the following changes:

load program: Here program is either Xxx.hack or Xxx.asm. This command loads

a machine language program (to be tested) into the simulated instruction memory. If

the program is written in assembly, it is translated into binary on the fly.

eval: Not applicable;

built-in-chip method argument(s): Not applicable;

ticktock: This command is used instead of tick and tock. Each ticktock

advances the clock one time unit (cycle).

B.3.4 Default Script

The CPU emulator’s GUI buttons (single step, run, stop, reset) don’t control the

loaded program. Rather, they control the progression of the loaded script, which

controls the program’s operation. Thus, there is a question of what to do if the user

has loaded a program directly into the CPU emulator without loading a script first.

In such cases, the emulator uses the following default script:

// Default script of the CPU emulator

repeat {

ticktock;

}

309 Test Scripting Language

B.4 Testing VM Programs on the VM Emulator

Chapters 7–8 describe a virtual machine model and specify a VM implementation

on the Hack platform. The VM emulator supplied with the book is an alternative

VM implementation that uses Java to run VM programs, visualize their operations,

and display the states of the effected virtual memory segments.

Recall that a VM program consists of one or more .vm files. Thus, the simulation

of a VM program involves four elements: the test script (Xxx.tst), the tested pro-

gram (a single Xxx.vm file or an Xxx directory containing one or more .vm files), an

optional output file (Xxx.out) and an optional compare file (Xxx.cmp). All these

files must reside in the same directory, which can be conveniently named xxx. For

more information about file structure and recommended usage, see section B.1.

Chapter 7 provides essential information about the virtual machine architecture,

without which the discussion below will not make much sense.

Startup Code A VM program is normally assumed to contain at least two func-

tions: Main.main and Sys.init. When the VM translator translates a VM pro-

gram, it generates machine language code that sets the stack pointer to 256 and then

calls the Sys.init function, which then calls Main.main. In a similar fashion, when

the VM emulator is instructed to execute a VM program (collection of one or more

VM functions), it is programmed to start running the Sys.init function, which is

assumed to exist somewhere in the loaded VM code. If a Sys.init function is

not found, the emulator is programmed to start executing the first command in the

loaded VM code.

The latter convention was added to the emulator in order to assist the gradual

development of the VM implementation, which spans two chapters in the book. In

chapter 7, we build only the part of the VM implementation that deals with pop,

push, and arithmetic commands, without getting into subroutine calling commands.

Thus, the test programs associated with Project 7 consist of ‘‘raw’’ VM commands

without the typical function/return wrapping. Since we wish to allow informal

experimentation with such commands, we gave the VM emulator the ability to exe-

cute ‘‘raw’’ VM code which is neither properly initialized nor properly packaged in a

function structure.

Virtual Memory Segments In the process of simulating the virtual machine’s oper-

ations, the VM emulator manages the virtual memory segments of the Hack VM

(argument, local, etc.). These segments must be allocated to the host RAM—a

310 Appendix B

task that the emulator normally carries out as a side effect of simulating the execu-

tion of call, function, and return commands. This means that when simulating

‘‘raw’’ VM code that contains no subroutine calling commands, we must force the

VM emulator to explicitly anchor the virtual segments in the RAM—at least those

segments mentioned in the current code. Conveniently, this initialization can be ac-

complished by script commands that manipulate the pointers controlling the base

RAM addresses of the virtual segments. Using these script commands, we can effec-

tively put the virtual segments in selected areas in the host RAM.

B.4.1 Example

The FibonacciSeries.vm file contains a series of VM commands that compute

the first n elements of the Fibonacci series. The code is designed to operate on two

arguments: the value of n and the starting memory address in which the computed

elements should be stored. The script in figure B.6 is designed to test this program

using the actual arguments 6 and 4000.

B.4.2 Variables

Scripting commands running on the VM emulator can access the following ele-

ments:

Contents of Virtual Memory Segments

local[i]: value of the i-th element of the local segment;

argument[i]: value of the i-th element of the argument segment;

this[i]: value of the i-th element of the this segment;

that[i]: value of the i-th element of the that segment;

temp[i]: value of the i-th element of the temp segment.

Pointers to Virtual Memory Segments

local: base address of the local segment in the RAM;

argument: base address of the argument segment in the RAM;

this: base address of the this segment in the RAM;

that: base address of the that segment in the RAM.

311 Test Scripting Language

Implementation-Specific Variables

RAM[i]: value of the i-th RAM location;

SP: value of the stack pointer;

currentFunction: name of the currently executing function (read only).

line: contains a string of the form: current-function-name.line-index-in-function

(read only).

For example, when execution reaches the third line of the function Sys.init, the

line variable contains ‘‘Sys.init.3’’. This is a useful means for setting breakpoints

in selected locations in the loaded VM program.

/* The FibonacciSeries.vm file contains a series of VM commands

that compute the first n Fibonacci numbers. The program's

code contains no function/call/return commands, and thus the

VM emulator must be forced to initialize the virtual memory

segments used by the code explicitly.

*/

// Load the program and set up for the simulation

load FibonacciSeries.vm,

output-file FibonacciSeries.out,

compare-to FibonacciSeries.cmp,

output-list RAM[4000]%D1.6.2 RAM[4001]%D1.6.2 RAM[4002]%D1.6.2

RAM[4003]%D1.6.2 RAM[4004]%D1.6.2 RAM[4005]%D1.6.2;

// Initialize the stack and the argument and local segments.

set SP 256, // Stack pointer (stack begins in RAM[256])

set local 300, // Base the local segment in some RAM location

set argument 400; // Base the argument segment in some RAM loc.

// Set the arguments to two test values

set argument[0] 6, // n=6

set argument[1] 4000; // Put the series at RAM[4000] and onward

// Execute enough VM steps to complete the program's execution

repeat 140 {

vmstep;

}

output;

Figure B.6 Testing a VM program on the VM emulator.

312 Appendix B

B.4.3 Commands

The VM emulator supports all the commands described in section B.2.3, except for

the following changes:

load source: Here source is either Xxx.vm, the name of a file containing one or

more VM functions, or a series of ‘‘raw’’ VM commands, or Xxx, the name of a

directory containing one or more .vm files (in which case all of them are loaded).

If the .vm files are located in the current directory, the source argument can be

omitted.

tick/tock: Not applicable.

vmstep: Simulates the execution of a single VM command from the VM program,

and advances to the next command in the code.

B.4.4 Default Script

The VM emulator’s GUI buttons (single step, run, stop, reset) don’t control the

loaded VM code. Rather, they control the progression of the loaded script, which

controls the code’s operation. Thus, there is a question of what to do if the user has

loaded a program directly into the VM emulator without loading a script first. In

such cases, the emulator uses the following default script:

// Default script of the VM emulator

repeat {

vmstep;

}

313 Test Scripting Language

